If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x=11
We move all terms to the left:
2x^2+x-(11)=0
a = 2; b = 1; c = -11;
Δ = b2-4ac
Δ = 12-4·2·(-11)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{89}}{2*2}=\frac{-1-\sqrt{89}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{89}}{2*2}=\frac{-1+\sqrt{89}}{4} $
| 40=-2(4)r | | 7/2=21/3y | | A=πr(2) | | 57=-3-5c | | 2(-2+x)=14 | | 3(+4)=5(x-1)+32 | | 3x+5+8x+9=113 | | X+x2=96 | | (50x120)÷10=N | | 15x-4x=66 | | 15x-4x=66 | | 6.5+y=42.25 | | 8c-4c=-47+27 | | X+11x/3=7/12 | | 9/45=3/c | | -3(-8v+3)-3v=6(v-1)-9 | | 2/3x-4=-5+5/6x | | 10x^2-3x-6=0 | | (7x+6)(x+3)=0 | | 8x+(4.64-3.64)=200 | | 7x-10+2x+41=90 | | n+7=-2n-9 | | 6x^2+15x+1=4x-2 | | (3k-5)(4k+5)=0 | | 5y+32=-2 | | 8+3n=8+4n | | 4x-7=8(x-2) | | 9=z-12;z=20 | | 4x-7=8(x-1) | | 4x+7x=55 | | 16+y=22;y=8 | | 30.8x=x15.2 |